Existence of Solutions to First-Order Dynamic Boundary Value Problems∗
نویسندگان
چکیده
This article investigates the existence of solutions to boundary value problems (BVPs) involving systems of first-order dynamic equations on time scales subject to two-point boundary conditions. The methods involve novel dynamic inequalities and fixed-point theory to yield new theorems guaranteeing the existence of at least one solution. AMS subject classification: 39A12, 34B15.
منابع مشابه
On the existence of nonnegative solutions for a class of fractional boundary value problems
In this paper, we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation. By applying Kranoselskii`s fixed--point theorem in a cone, first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function. Then the Arzela--Ascoli theorem is used to take $C^1$ ...
متن کاملExistence of solutions of boundary value problems for Caputo fractional differential equations on time scales
In this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1
متن کاملExistence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملSolutions of initial and boundary value problems via F-contraction mappings in metric-like space
We present sufficient conditions for the existence of solutions of second-order two-point boundary value and fractional order functional differential equation problems in a space where self distance is not necessarily zero. For this, first we introduce a Ciric type generalized F-contraction and F- Suzuki contraction in a metric-like space and give relevance to fixed point results. To illustrate...
متن کاملPositive solutions of $n$th-order $m$-point boundary value problems
In this paper, by using four functionals fixed point theorem, we obtain sufficient conditions for the existence of at least one positive solution of an $n$th-order $m$-point boundary value problem. As an application, we give an example to demonstrate our main result.
متن کاملExistence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
متن کامل